Emerging Areas in Photoelectron Spectroscopy (you can teach an old spectrometer new tricks)

K. Xerxes Steirer Research Assistant Professor of Applied Physics Colorado School of Mines

Mines Physics 2016

ksteirer@mines.edu

What I Won't Talk About

- Standing Wave PES
- HAXPES Hard Xrays
- Res-PES
- 2-PPE
- Spin resolved PES
- NEXAFS, XANES, variable energy PES or other beamline techniques
- The election

What I Will Talk About

- Photoelectric Effect
- XPS & UPS
- Apparatus
- Full spectral analysis
- Example Studies
 - Dipoles
 - NP interfaces
 - X-ray induced degradation
- New Areas in PES

Early Photoelectric Discovery

- 1887 Hertz •
- Hallwachs showed UV increases positive charge to metal
- 1899 Lenard demonstrated that the increasing charge is emission of electrons and that their velocity is independent of light intensity, depending rather on energy – disagreed with prevailing concepts
- Photoelectric effect 1905 •
- Verified by Millikan and students ٠
- "Einstein's Law has become the basis of quantitative photochemistry in the same way as Faraday's Law is the basis of electro-chemistry."

The Nobel Prize in Physics 1921

Albert Einstein Prize share: 1/1

The Nobel Prize in Physics 1921 was awarded to Albert Einstein "for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect".

- From Nobel Lectures, Physics 1901-1921, Elsevier Publishing Company, Amsterdam, 1967
- https://en.wikipedia.org/wiki/Photoelectric_effect

http:// einsteinpapers.press. princeton.edu/vol2trans/100?ajax

http://eng.thesaurus.rusnano.com/wiki/ article1915

Mines Physics 2016

Mines Physics 2016

Fermi Level Reference

Ultraviolet photoelectron spectroscopy

$$\phi = h\nu - (E_{\text{Fermi}} - KE_{\text{low}})$$

$$IP = h\nu - (KE_{high} - KE_{low})$$

- Sample charging
- Auger transitions
- Plasmon loss
- X-ray satelites
- X-ray "ghosts"
- Overlapping • peaks
- Spectral ID
- Chemical shifts

Mo 3d, S 2s

o data

fit

Before

Annealing

Binding Energy (eV)

Gu, Aguiar, Ferrere, Steirer, Yan, Xiao, Young, Al-Jassim, Neale, Turner, Nature Energy, 2016 accepted 11 ksteirer@mines.edu

LORADOSCHOOLOF

Mines Physics 2016

l + s

224

PES as a Research Tool

- Limitations
 - Requires high vacuum \$\$
 - Slow data acquisition/ processing
 - Large Area
 Required
 - H and He not Measureable
 - Only Li and up

- Advantages

 Non-destructive
 - Surface Sensitive
 ~few nm
 - Quantitative Composition
 - Identifies Chemical States
 - Measures Electronic Structures of Surfaces and Interfaces

PES Research Topics

Interface dipole effects

Ishii, H., Sugiyama, K., Ito, E. & Seki, K. Adv. Mater. 11, 605–625 (1999).

Mines Physics 2016

Bulk Heterojunction PV

COLORADOSCHOOLO

$$V_{OC} \leq \frac{1}{q} |LUMO_A - HOMO_D| - 0.3V$$

Energy from
Vacuum (eV)
 5.1
 5.1
 5.5
 100
 5.5
 100
 5.5
 100
 5.5
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 100
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 10000
 1000

NiOOH Structure-Property-Function

Mines Physics 2016

ERGY • ENVIRONMENT

DOSC

Ratcliff, Meyer, Steirer, Armstrong, Olson, Kahn, Organic Electronics, 13 744, (2012)

C. Shallcross, et al., J. Phys. Chem. Lett., 6 1303, (2015) ksteirer@mines.edu

Dipole effect in photoelectrochemistry

MacLeod, Steirer, Young, Koldemir, Sellinger, Turner, Deutsch, Olson, ACS Appl. Mater. Interfaces 7, 11346–11350 (2015).

PES Research Topics

Voltage loss at recombination interface

Sun et al. *Applied Physics Letters* (2010) vol. 97 (5) pp. 053303

Donor/Acceptor

Metal Donor/Acceptor

Zou et al. *Applied Physics Letters* (2012) vol. 100 (24) pp. 243302

Morphology of Metal/Fullerene

Polarized interfaces

Lu, X., Grobis, M., Khoo, K., Louie, S. & Crommie, M. *Phys. Rev. B* **70**, 115418 (2004).

Charge redistribution at C₆₀/Metal

K Steirer, G MacDonald, S Olthof, J Gantz, E Ratcliff, A Kahn, and N Armstrong, J Phys Chem C 117(2013)p22331.

Binding Energy (eV)

Mines Physics 2016

Combined morphology and energetics

Device	<u>∨</u> ₀₀ (∨)
subcell	0.43
No-interlayer	0.45
1 <u>nm</u> Au	0.56
1 nm Ag	0.81

 $\Delta = 0.3$ (b) E_{vac} (a) _{Evac} $\Delta = 0.3$ 4.6 5.2 4.9 4.3 6.4 6.4 4.9 4.7 EA EA E: EF 0.6 0.7 IE IE (c) (d)

K Steirer, G MacDonald, S Olthof, J Gantz, E Ratcliff, A Kahn, and N Armstrong, *J Phys Chem C* 117(2013)p22331.

C60

C₆₀/Ag

CuPc

- mirror potential
- · rehybridized frontier molecular orbitals
- · delocalized interface state with Ag
- NPs form at both interlayers
 - · affected by the nucleation and growth
 - Au is more uniform but less effective
- Voc addition may be result of exohedral doping/charge redistribution

C₆₀

C₆₀/Au CuPc

PES Research Topics

Unprecedented Progress

Berry, J., Buonassisi, T., et al. Hybrid Organic–Inorganic Perovskites (HOIPs): Opportunities and Challenges. Adv. Mater. **27**, 5102– 5112 (2015).

Electron Degraded CH₃NH₃Pbl₃

Approach

- X-ray flux ~ 1.5×10^{11} ph/cm²s
 - Can vary by tilting sample, anode choice, changing spectrometers
 - 2 mm Al mono
 - 45° incident
 - Minimum spot
 - 5.4 x 10¹⁴ ph/cm²hr
- Measure (x510 over 42 hr)
 - elemental %
 - chemical state (BE)
 - valence spectra (E_v)
- Choose vacuum stable MAPI samples (2x10⁻¹⁰ torr)
 - Glass/FTO/TiO₂/MAPI
 - Stable in vacuum up to one week

SAMPLE

$I = N \sigma D J L \lambda A T$

- $N = atoms/cm^3$
- σ = photoelectic cross-section, cm³
 - D = detector efficiency
 - J = X-ray flux, photon/cm² sec
 - L = orbital symmetry factor
- λ = inelastic electron mean-free path, cm A = analysis area, cm²
 - T = analyzer transmission efficiency

Loss of CH₃NH₃

- N 1s intensity decay follows 1st order kinetics
- Degradation products also observed

• Steirer, K. X., Schulz, P., et al., ACS Energy Lett. 1, 360–366 (2016).

Uniformly Changing Composition

- Uniform CH₃NH₃ profile
- Slight I surface enrichment
- For n = 3, 3D growth
- For n = 1, constant nucleation rate

ARXPS Atomic Concentration

N 1s I 3d_{5/2} Pb 4f_{7/2} (RSF Factor)

(0.499) (6.302) (5.172)

- 16.9 59.4 23.7 60° Take Off
- 16.7 57.0 26.3 **6° Take Off**

Avrami, M., Granulation, Phase Change, and Microstructure Kinetics of Phase Change. III, Journal of Chemical Physics, 9, 177 (1941) Du, Z. H., et al., Perovskite crystallization kinetics and dielectric properties of the PMN-PT films ..., J. Mater. Res. 24, 1576–1584 (2009).

COLORADOSCHOOLOFMINES

Mines Physics 2016

ksteirer@mines.edu

Bulk Transformation to Pbl₂

- E_g increases from 1.6 eV to 2.3 eV
- Entire film color changes to yellow

• Steirer, K. X., Schulz, P., et al., ACS Energy Lett. 1, 360–366 (2016).

Delayed Chemical Transformation

- I/Pb ratio decreases similarly to the N 1s intensity
- No chemical shift or increase FWHM for first 4.5 hr
- FWHM increases then decreases after 9.1 hr
- FWHM returns to original value upon long exposure

Delayed Chemical Transformation

Mines Physics 2016

Spectral Decomposition

Valence Follows Molar Fraction

Initially Stable Properties

Neutral Ordered Defects

- XPS indicates CH₃NH₃ and I leaving simultaneously in pairs
- CIS tolerant to 1%
 defect density

FIG. 3. The calculated structural model for the $(2V_{Cu}^{-} + In_{Cu}^{2+})$ defect pair.

- Zhang, S. B., Wei, S.-H. & Zunger, A. Stabilization of Ternary Compounds via Ordered Arrays of Defect Pairs. *Phys. Rev. Lett.* **78**, 4059–4062 (1997).
- Yin, W.-J., Shi, T. & Yan, Y. Unusual defect physics in CH3NH3Pbl3 perovskite solar cell absorber. *Appl. Phys. Lett.* **104**, 063903 (2014).

Mines Physics 2016

Defect Tolerance Predictions

CH₃NH₃Pbl₃ Defect Tolerance

- Core levels for I and Pb track with ${\rm E}_{\rm V}$
- BE levels stable for I/Pb down to 2.5
- Defect formation appears to be paired $V_{MA} + V_{I}$
- Defect density corresponds to one defect per octahedron
- Tolerance up to 1/6 of I lattice sites!!!

Helps Explain Device Failure

Matsumoto, F., Vorpahl, S. M., Banks, J. Q., Sengupta, E. & Ginger, D. S. Photodecomposition and Morphology Evolution of Organometal Halide Perovskite Solar Cells. J. Phys. Chem. C **119**, 20810–20816 (2015).

Mines Physics 2016

Emerging Areas in PES

- Ambient Pressure (APXPS)
- Operando
- Chemically Resolved Electrical Measurements (CREM)

Ambient Pressure PES

Ambient Pressure PES

Operando PES

Sezen, H., Rockett, A. A. & Suzer, S. Anal. Chem. 84, 2990–2994 (2012).

COLORADOSCHOOLOFMINES.

Lichterman, M. F. et al. Energy Environ. Sci. **8**, 2409-2416 (2015).

PES Research Topics

Chemically Resolved Electrical Measurements

Mines Physics 2016

ENVIRONMENT

ksteirer@mines.edu

Defects that enhance performance

CZTSe/<u>CdS</u>/i-ZnO/AI:ZnO/metal cleaved from device. CBD-CdS operates differently than CBD-ZnOS by place exchange and results in very different electronic structure and solar cell operation.

and i-ZnO.

CZTSe/<u>ZnOS</u>/i-ZnO/AI:ZnO/metal cleaved from device. CBD-ZnOS is

visible and is physically central pn-

junction formed between CZTSe

<u>CIS/ZnOS attained record 20.9% PCE</u> - Osborne, Mark. "Solar Frontier produces record 20.9% CIS thin-film solar cell," *PVTech*, 02 April 2014. *Fraunhofer verified*

Mines Physics 2016

Huge Conduction Band Offset

Unexpected Performance

Chemically Resolved Electrical Measurements

Light-CREM

Photoelectron Spectroscopy

- More Resources
 - Prof. Paul Chu Univ. Hong Kong
 - http:// slideplayer.com/slide/ 5052993/
 - Ralph Claessen Univ.
 Wurzburg
 - http:// www.slideshare.net/ nirupam12/ photoelectronspectroscopy-forfunctional-oxides
 - Textbook
 - Practical Surface Analysis by Briggs and Seah 1990

http://xpssimplified.com/

Acknowledgements

Thanks to:

David Ginley **Reuben Collins** Dana Olson Joe Berry

Hagai Cohen Alon Givon

Andres Garcia Matt Reese Paul Ndione Edwin Widjonarko Alex Miedaner Jordan Chesin Philip Schulz Steve Harvey **Craig Perkins** Glenn Teeter Kai 7hu Mengjin Yang

Erin Ratcliff Gordon MacDonald Kento Ou Paul Lee **Neal Armstrong**

Jens Meyer Selina Olthof Antoine Kahn

OFMINES

NATIONAL RENEWABLE ENERGY LABORATORY

COLORADOSCHOOL

ksteirer@mines.edu